[3+2] Cycloaddition-based one-pot synthesis of 3,9-diazabicyclo[4.2.1]nonane-containing scaffold

Xiaofeng Zhang ${ }^{\mathbf{1}}$, Marc Legris ${ }^{\mathbf{1}}$, Alex Muthengi ${ }^{1}$, Wei Zhang ${ }^{1 *}$
${ }^{1}$ Center for Green Chemistry and Department of Chemistry, University of Massachusetts Boston,
100 Morrissey Boulevard, Boston MA 02125, U. S. A; e-mail: wei2.zhang@umb.edu

Three-component [3+2] cycloaddition followed by reduction and lactamization has been developed as a one-pot methodology for diastereoselective synthesis of 3,9-diazabicyclo[4.2.1]nonane-containing scaffold.
Keywords: 3,9-diazabicyclo[4.2.1]nonane, [3+2] cycloaddition, 1,3-dipolar cycloaddition, multicomponent reaction, one-pot synthesis.

1,3-Dipolar cycloaddition of azomethine ylides involving aldehyde, amine, and activated alkene is a well-established multicomponent reaction (MCR). ${ }^{1}$ Compounds generated by [3+2] cycloaddition are valuable intermediates for postaddition reactions to access diverse heterocyclic scaffolds.

Our group has integrated the fluorous technology, ${ }^{2}$ MCRs, ${ }^{3}$ as well as pot, atom, and step economic (PASE) ${ }^{4}$ reaction processes to increase the efficiency of [3+2] cycloadditionbased synthesis of novel heterocyclic compound libraries $\mathbf{A}-\mathbf{F}$ (Scheme 1). ${ }^{5-11}$

Scheme 1

Orexin receptor antagonist

Dopamine transporter inhibitor

Delta opioid agonist

Antibacterial agent

Serotonin reuptake inhibitor

Antitumor antibiotic (-)-quinocarcin

Figure 1. Representative biologically active bridged N-cyclic compounds.

Some diazabicyclo[4.2.1]nonane derivatives possess biological activity and have been demonstrated as potential dual orexin receptor antagonists, ${ }^{12}$ delta opioid agonists, ${ }^{13}$ serotonin reuptake inhibitors, ${ }^{14}$ dopamine transporter inhibitors, ${ }^{15}$ antibacterial agents, ${ }^{16}$ and antitumor antibiotics (Fig. 1). ${ }^{17}$ Grigg has reported a three-step protocol for the synthesis of bridged bi- and tricyclic lactams, involving [3+2] cycloaddition of aldimines and activated alkenes and sequential hydrazine-promoted lactamization for 3,9-diazabicyclo[4.2.1]nonane \mathbf{G} (Scheme 2). ${ }^{18}$ To improve the synthetic efficiency and increase the structural diversity of the products $\mathbf{1}$, we have designed a one-pot reaction process utilizing 2-azidobenzaldehydes $\mathbf{3 a , c , f}$ or 2-nitrobenzaldehydes $\mathbf{3 b}, \mathbf{d}, \mathbf{e}$ for three-component [3+2] cycloaddition. The azide or nitro group in intermediates $\mathbf{5}$ may be reduced to amine prior to lactamization without isolation and/or purification of the [3+2] cycloaddition products. Herein, we report a new PASE synthesis involving [3+2] cyclo-
addition, azide/nitro reduction, and lactamization that allows to obtain bridged polycyclic system 1 bearing tetrahydrobenzoazocinone, pyrrolidine, and pyrrolidinedione fragments within the 3,9-diazabicyclo[4.2.1]nonane scaffold.

Our initial effort was focused on the development of reaction conditions for the one-pot synthesis of 3,9-diazabicyclo[4.2.1]nonane 1a using 1.2:1.1:1.0 of L-alanine methyl ester hydrochloride (2a), 2-azidobenzaldehyde (3a) or 2-nitrobenzaldehyde (3b), and N-benzylmaleimide (4e) as starting materials (Table 1). Following our previously reported conditions for diastereoselective [3+2] cycloaddition ${ }^{10,11,19}$ and explored solvents ($\mathrm{PhMe}, \mathrm{MeCN}$, MeOH), reaction temperature, and time for sequential reduction and lactamization, ${ }^{7,8,18}$ we found that the optimized reaction conditions for the [3+2] cycloaddition involved the use of $E t_{3} \mathrm{~N}$ as a base under microwave irradiation at $125^{\circ} \mathrm{C}$ for 25 min . Without workup, the

Scheme 2
Reported three-step synthesis (ref. 18)

One-pot synthesis (this work)

$2 \mathbf{a} \mathrm{R}^{2}=\mathrm{Me}, \mathbf{b} \mathrm{R}^{2}=\mathrm{Et}, \mathbf{c} \mathrm{R}^{2}=i-\mathrm{Bu}, \mathbf{d} \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OH}, \mathbf{e} \mathrm{R}^{2}=\mathrm{Bn}$
3 a $R^{1}=H, R^{4}=N_{3} ; b R^{1}=H, R^{4}=\mathrm{NO}_{2} ; \mathbf{c} \mathrm{R}^{1}=4-\mathrm{MeO}, \mathrm{R}^{4}=\mathrm{N}_{3} ; \mathbf{d} \mathrm{R}^{1}=4-\mathrm{MeO}, \mathrm{R}^{4}=\mathrm{NO}_{2} ;$ e $\mathrm{R}^{1}=4,5-\mathrm{OCH}_{2} \mathrm{O}, \mathrm{R}^{4}=\mathrm{NO}_{2} ; f \mathrm{R}^{1}=5-\mathrm{Cl}, \mathrm{R}^{4}=\mathrm{N}_{3}$
$4 \mathrm{aR}^{3}=\mathrm{Me}, \mathbf{b} \mathrm{R}^{3}=\mathrm{Et}, \mathbf{c} \mathrm{R}^{3}=i-\mathrm{Bu}, \mathrm{d}^{3}=\mathrm{Cy}, \mathrm{e}^{3}=\mathrm{Bn}, \mathrm{f}^{3}=\mathrm{Ph}$

Table 1. Optimization of the conditions for one-pot synthesis of compound 1a

resulting intermediate $\mathbf{5 a}$ or $\mathbf{5 b}$ as a single diastereomer was reduced with 6.0 equiv of zinc dust in the presence of 4.0 equiv of AcOH under conventional heating at $80^{\circ} \mathrm{C}$ for 16 h to afford product 1a in 81% (using aldehyde 3a) and 77% (aldehyde 3b) yield (Table 1, entries 6 and 7). MeOH was found to be the appropriate solvent for the first step of the reaction, while $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 3: 1$, was the best choice for the reduction and lactamization steps.

Starting materials bearing different substituents R^{1}, R^{2}, and R^{3} were employed for the synthesis of 15 analogs of bridged N-cyclic products 1 under the optimized reaction conditions (Scheme 3). The yields of 3,9-diazabicyclo[4.2.1]nonanes $\mathbf{1 a - o}$ obtained by this one-pot three-step synthesis were in the range of $59-83 \%$. The choice of azido or nitro substituents in benzaldehydes $\mathbf{3}$ had no significant effect on the yields of final products $\mathbf{1 a - 0}$.

Scheme 3

[^0]In conclusion, a PASE synthesis involving three-component $[3+2]$ cycloaddition, reduction, and lactamization has been developed to obtain 3,9-diazabicyclo[4.2.1]nonanes bearing different substituents. The [3+2] cycloaddition affords a single diastereomer which is reduced with zinc followed by spontaneous lactamization to form the product.

Experimental

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on an Agilent NMR spectrometer (400 and 101 MHz , respectively). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{1 e}, \mathbf{l}$ were obtained in DMSO- d_{6}, all other compounds were analyzed as their CDCl_{3} solutions. Low-resolution mass spectra were recorded by APCI (atmospheric pressure chemical ionization) method. LC-MS analyses were performed on an Agilent 2100 LC apparatus with a 6130 quadrupole mass spectrometer. A Venusil AQ-C ${ }_{18}$ column ($5.0 \mu \mathrm{~m}$, $6.0 \times 50 \mathrm{~mm}$) was used for the separation. The eluents were MeOH and $\mathrm{H}_{2} \mathrm{O}$ both containing $0.05 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$. A linear gradient from 25:75 (v/v) MeOH/ $\mathrm{H}_{2} \mathrm{O}$ to $100 \% \mathrm{MeOH}$ over 7.0 min at a flow rate of $0.7 \mathrm{ml} / \mathrm{min}$ was applied for the mobile phase. UV detections were conducted at 210, 254, and 365 nm . Final products were purified on an Angela HP-100 pre-LC system with a Venusil PrepG C ${ }_{18}$ column ($10 \mu \mathrm{~m}, 120 \AA$ Å, $21.2 \times 250 \mathrm{~mm}$). All chemicals and solvents were purchased from commercial suppliers and used as received.

One-pot synthesis of bridged polycyclic compounds 1a-0 (General method). To a solution of an amino acid ester hydrochloride 2 (1.2 mmol), 2-azidobenzaldehyde or 2-nitrobenzaldehyde $\mathbf{3}(1.1 \mathrm{mmol})$, and maleimide 4 $(1.0 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{ml}), \mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{ml}, 1.5 \mathrm{mmol})$ was added. After stirring at $25^{\circ} \mathrm{C}$ for 5 min , the reaction mixture was heated under microwave irradiation at $125^{\circ} \mathrm{C}$ for 25 min . Upon completion of the reaction, as confirmed by LC-MS, zinc dust ($392 \mathrm{mg}, 6.0 \mathrm{mmol}$), AcOH (0.2 ml , $4.0 \mathrm{mmol})$, and water $(1 \mathrm{ml})$ were added to the reaction mixture and then heated at $80^{\circ} \mathrm{C}$ for 12 h . After aqueous workup, the concentrated reaction mixture was separated on a semi-prep HPLC C_{18} column to afford the purified product 1 as a single diastereomer.

Compound 1a was obtained using amino acid ester hydrochloride $\mathbf{2 a}$, aldehyde $\mathbf{3 a}$ or $\mathbf{3 b}$, and maleimide $\mathbf{4 e}$. Yield 81\% (from aldehyde 3a), 77\% (from aldehyde 3b), white solid. ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}(J, \mathrm{~Hz}): 9.18(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C}(\mathrm{O}) \mathrm{NH}) ; 7.34(1 \mathrm{H}, \mathrm{d}, J=7.7, \mathrm{H} \mathrm{Ar}) ; 7.19-7.00(6 \mathrm{H}, \mathrm{m}$, H Ar); 6.96-6.85 (1H, m, H Ar); 6.78 (1H, d, $J=7.4$, H Ar); $4.70(1 \mathrm{H}, \mathrm{d}, J=7.2,11-\mathrm{CH}) ; 3.90(2 \mathrm{H}, \mathrm{dd}, J=36.5$, $\left.J=14.2, \mathrm{NCH}_{2}\right) ; 3.47(1 \mathrm{H}, \mathrm{s}, 11 \mathrm{a}-\mathrm{CH}) ; 3.33(1 \mathrm{H}, \mathrm{d}$, $J=10.1,3 \mathrm{a}-\mathrm{CH}) ; 2.95(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; 1.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $179.6 ; 174.2 ; 168.4 ; 135.5$; $134.9 ; 129.3 ; 128.7 ; 128.6 ; 127.7 ; 126.7 ; 123.8 ; 122.1$; 115.9; 66.2; 58.4; 53.2; 48.4; 42.0; 22.4. Found, m/z: $361.1529[\mathrm{M}]^{+} . \mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$. Calculated, m / z : 361.1505.

Compound 1b was obtained using amino acid ester hydrochloride 2a, aldehyde 3a, and maleimide $\mathbf{4 f}$. Yield 76%, off-white solid. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm $(J, \mathrm{~Hz})$: $8.88(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{NH}) ; 7.45(1 \mathrm{H}, \mathrm{dd}, J=22.7, J=14.1$,

H Ar); 7.23-7.06 (4H, m, H Ar); $7.02(1 \mathrm{H}, \mathrm{dt}, J=21.5$, $J=7.2, \mathrm{H} \mathrm{Ar}) ; 6.77(1 \mathrm{H}, \mathrm{d}, J=8.1, \mathrm{H} \mathrm{Ar}) ; 6.52-6.33(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 4.72(1 \mathrm{H}, \mathrm{t}, J=8.4,11-\mathrm{CH}) ; 3.52(2 \mathrm{H}, \mathrm{dq}$, $J=11.3, J=7.8,3 \mathrm{a}, 11 \mathrm{a}-\mathrm{CH}) ; 1.62\left(3 \mathrm{H}, \mathrm{d}, J=4.2, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $178.9 ; 173.3 ; 167.9 ; 135.7$; $131.1 ; 129.4 ; 128.7 ; 128.6 ; 127.1 ; 126.2 ; 124.2 ; 122.5$; 116.1; 66.2; 58.5; 53.4; 48.6; 22.7. Found, $m / z: 347.1301$ $[\mathrm{M}]^{+} . \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$. Calculated, m/z: 347.1289.

Compound 1c was obtained using amino acid ester hydrochloride $\mathbf{2 a}$, aldehyde $\mathbf{3 a}$ or $\mathbf{3 b}$, and maleimide $\mathbf{4 c}$. Yield 79\% (from both aldehydes 3a and 3b), white solid. ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}(J, \mathrm{~Hz}): 8.70(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{NH})$; 7.42-7.28 (1H, m, H Ar); 7.17-7.07 (1H, m, H Ar); 7.04$6.88(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 6.76(1 \mathrm{H}, \mathrm{d}, J=7.9, \mathrm{H} \mathrm{Ar}) ; 4.68(1 \mathrm{H}$, $\mathrm{t}, J=10.5,11-\mathrm{CH}) ; 3.46(1 \mathrm{H}, \mathrm{dd}, J=9.8, J=7.4$, 11a-CH); 3.37-3.23 (1H, m, 3a-CH); 2.70-2.55 (2H, m, $\left.\mathrm{NCH}_{2}\right) ; 1.60\left(1 \mathrm{H}, \mathrm{dd}, J=13.6, J=6.9, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1.55$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 0.62\left(6 \mathrm{H}, \mathrm{dd}, J=8.7, J=3.0, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $180.1 ; 174.5 ; 168.1 ; 135.5$; $129.3 ; 126.8 ; 123.8 ; 122.1 ; 115.8 ; 65.8 ; 58.3 ; 53.1 ; 48.3$; 45.6; 26.8; 22.7; 20.1; 20.0. Found, $m / z: 327.1648[\mathrm{M}]^{+}$. $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$. Calculated, $m / z: 327.1662$.

Compound 1d was obtained using amino acid ester hydrochloride 2a, aldehyde 3a, and maleimide 4b. Yield 81\%, light-yellow solid. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm $(J, \mathrm{~Hz}): 8.94(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{NH}) ; 7.41-7.30(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar})$; 7.20-7.05 (1H, m, H Ar); 7.03-6.88 (1H, m, H Ar); 6.84$6.71(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 4.80-4.63(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{CH}) ; 3.55-3.42$ $(1 \mathrm{H}, \mathrm{m}, 11 \mathrm{a}-\mathrm{CH}) ; 3.37-3.25(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{CH}) ; 3.04-2.92$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{NH}\right) ; 1.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 0.42(3 \mathrm{H}, \mathrm{t}$, $\left.J=7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: 179.6; $173.9 ; 168.2 ; 135.6 ; 129.3 ; 126.9 ; 124.0 ; 122.4 ; 115.9$; $66.1 ; 58.4 ; 53.4 ; 48.4 ; 33.8 ; 22.6 ; 11.5$. Found, m / z : $299.1283[\mathrm{M}]^{+} . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$. Calculated, m / z : 299.1262 .

Compound 1e was obtained using amino acid ester hydrochloride 2a, aldehyde 3b, and maleimide 4a. Yield 75%, off-white solid. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm ($J, \mathrm{~Hz}$): $10.13(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{NH}) ; 7.30-7.25(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 7.06-$ $6.98(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 6.83(1 \mathrm{H}, \mathrm{td}, J=7.5, J=0.9, \mathrm{H} \mathrm{Ar})$; $6.73(1 \mathrm{H}, \mathrm{d}, J=7.2, \mathrm{H} \mathrm{Ar}) ; 4.49(1 \mathrm{H}, \mathrm{d}, J=7.0,11-\mathrm{CH}) ;$ $3.22(1 \mathrm{H}, \mathrm{d}, J=10.0,11 \mathrm{a}-\mathrm{CH}) ; 3.15-3.09(2 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{CH}$, $\mathrm{NH}) ; 2.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right) ; 1.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $180.0 ; 175.2 ; 168.0 ; 137.2 ; 128.6 ; 127.1$; $123.6 ; 122.5 ; 115.5 ; 66.7 ; 58.5 ; 53.1 ; 48.8 ; 24.1 ; 21.5$. Found, m / z : $285.1351[\mathrm{M}]^{+} . \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$. Calculated, m / z : 285.1323.

Compound 1f was obtained using amino acid ester hydrochloride 2c, aldehyde 3a, and maleimide 4a. Yield 77%, white solid. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm ($J, \mathrm{~Hz}$): 9.19 $(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{NH}) ; 7.31(1 \mathrm{H}, \mathrm{d}, J=7.6, \mathrm{H}$ Ar $) ; 7.11(1 \mathrm{H}, \mathrm{t}$, $J=7.5, \mathrm{H} \operatorname{Ar}) ; 6.99(1 \mathrm{H}, \mathrm{td}, J=7.6, J=0.8, \mathrm{H} \mathrm{Ar}) ; 6.82$ $(1 \mathrm{H}, \mathrm{t}, J=11.1, \mathrm{H} \mathrm{Ar}) ; 4.66(1 \mathrm{H}, \mathrm{t}, J=8.9,11-\mathrm{CH}) ; 3.49-$ $3.38(2 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}, 11 \mathrm{a}-\mathrm{CH}) ; 2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right) ; 1.92-1.82$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1.77-1.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $0.92\left(3 \mathrm{H}, \mathrm{t}, J=7.9, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.87(3 \mathrm{H}, \mathrm{d}, J=6.5$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: 180.2; 174.8; $168.5 ; 135.5 ; 129.1 ; 126.5 ; 123.8 ; 122.4 ; 116.0 ; 69.4 ; 57.4$; $50.9 ; 48.5 ; 43.7 ; 24.9 ; 24.4 ; 24.3 ; 23.8$. Found, m / z : $327.1648[\mathrm{M}]^{+} . \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$. Calculated, m / z : 327.1662.

Compound 1 g was obtained using amino acid ester hydrochloride 2c, aldehyde 3c, and maleimide 4d. Yield 80%, light-yellow solid. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm $(J, \mathrm{~Hz}): 9.01(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{NH}) ; 7.20(1 \mathrm{H}, \mathrm{dd}, J=17.6$, $J=5.8, \mathrm{H} \mathrm{Ar}) ; 6.56-6.46(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 6.41-6.28(1 \mathrm{H}$, m, H Ar); 4.62-4.56 (1H, m, 11-CH); $3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$; 3.54-3.48 (1H, m, 1-CH Cy); 3.41-3.36 (2H, m, 3a, 11a-CH); $1.89\left(1 \mathrm{H}, \mathrm{tt}, J=13.4, J=6.5, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1.62(6 \mathrm{H}$, ddd, $\left.J=20.2, J=12.5, J=8.4, \mathrm{H} \mathrm{Cy}, \mathrm{CH}_{\mathrm{B}} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $1.47\left(1 \mathrm{H}, \mathrm{d}, J=8.8, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1.10-0.95(3 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Cy})$; $0.91\left(3 \mathrm{H}, \mathrm{d}, J=6.3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.88\left(3 \mathrm{H}, \mathrm{d}, J=6.3, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $0.78\left(2 \mathrm{H}\right.$, dd, $J=27.2, J=12.3, \mathrm{H}$ Сy). ${ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $180.2 ; 174.3 ; 168.6 ; 160.6 ; 136.7 ; 128.0$; $114.8 ; 109.4 ; 101.8 ; 68.8 ; 56.9 ; 55.5 ; 51.6 ; 50.8 ; 48.5$; $44.5 ; 27.9 ; 27.5 ; 25.5 ; 25.4 ; 25.0 ; 24.8 ; 24.1 ; 23.9$. Found, m / z : $425.2376[\mathrm{M}]^{+} . \mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4}$. Calculated, m / z : 425.2394.

Compound 1 h was obtained using amino acid ester hydrochloride 2c, aldehyde 3c or 3d, and maleimide 4e. Yield 79% (from aldehyde 3c), 83\% (from aldehyde 3d), white solid. ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}(J, \mathrm{~Hz}): 8.31(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C}(\mathrm{O}) \mathrm{NH}) ; 7.16(6 \mathrm{H}$, ddd, $J=17.6, J=9.4, J=6.0, \mathrm{H} \mathrm{Ar})$; $6.50(1 \mathrm{H}, \mathrm{dd}, J=8.6, J=2.3, \mathrm{H} \mathrm{Ar}) ; 6.26(1 \mathrm{H}, \mathrm{s}, \mathrm{H} \mathrm{Ar}) ;$ $4.62(1 \mathrm{H}, \mathrm{d}, J=6.6,11-\mathrm{CH}) ; 4.04-3.93\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right)$; $3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ; 3.40(2 \mathrm{H}, \mathrm{dt}, J=10.1, J=8.4$, $3 \mathrm{a}, 11 \mathrm{a}-\mathrm{CH}) ; 1.86\left(1 \mathrm{H}, \mathrm{dd}, J=14.1, J=6.3, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $1.65\left(1 \mathrm{H}, \mathrm{dd}, J=14.1, J=6.4, \mathrm{CH}_{\mathrm{B}} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1.54(1 \mathrm{H}$, td, $\left.J=13.0, J=6.5, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.82(3 \mathrm{H}, \mathrm{d}, J=6.6$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.75\left(3 \mathrm{H}, \mathrm{d}, J=6.6, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}$ spectrum, δ, ppm: $179.6 ; 174.3 ; 168.1 ; 160.2 ; 136.4 ; 134.9$; $128.7 ; 128.4 ; 127.8 ; 127.8 ; 114.4 ; 109.3 ; 101.3 ; 69.4 ; 57.0$; 55.3; 51.0; 48.6; 44.1; 42.1; 24.8; 24.1; 23.6. Found, m/z: $433.2056[\mathrm{M}]^{+} . \mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}$. Calculated, $m / z: 433.2081$.

Compound 1i was obtained using amino acid ester hydrochloride 2c, aldehyde $\mathbf{3 e}$, and maleimide $4 \mathbf{e}$. Yield 81%, off-white solid. ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}(J, \mathrm{~Hz})$: $7.76(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{NH}) ; 7.22-7.14(4 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 6.76(1 \mathrm{H}$, s, H Ar); $6.12(1 \mathrm{H}, \mathrm{s}, \mathrm{H} \operatorname{Ar}) ; 5.89(2 \mathrm{H}, \mathrm{dd}, J=27.4, J=1.1$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right) ; 4.55(1 \mathrm{H}, \mathrm{d}, J=7.3,11-\mathrm{CH}) ; 4.11(2 \mathrm{H}, \mathrm{dd}$, $\left.J=36.7, J=13.8, \mathrm{NCH}_{2}\right) ; 3.43(1 \mathrm{H}, \mathrm{d}, J=10.1,3 \mathrm{a}-\mathrm{CH})$; $3.34(1 \mathrm{H}, \mathrm{dd}, J=9.9, J=7.4,11 \mathrm{a}-\mathrm{CH}) ; 2.71(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $1.88\left(1 \mathrm{H}, \mathrm{dd}, J=13.9, J=6.3, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1.69-1.64$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{B}} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.84(3 \mathrm{H}, \mathrm{d}, J=6.5$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.78\left(3 \mathrm{H}, \mathrm{d}, J=6.5, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $179.1 ; 174.1 ; 168.3 ; 147.9 ; 144.2 ; 134.8$; $129.4 ; 129.0 ; 128.3 ; 127.8 ; 114.9 ; 106.5 ; 101.4 ; 97.3 ; 69.6$; 57.6; 51.0; 48.6; 44.0; 42.3; 30.9; 24.9; 24.2; 23.6. Found, $m / z: 447.1886[\mathrm{M}]^{+} . \mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}$. Calculated, m / z : 447.1873 .

Compound $\mathbf{1 j}$ was obtained using amino acid ester hydrochloride $\mathbf{2 c}$, aldehyde $\mathbf{3 f}$, and maleimide $\mathbf{4 e}$. Yield 59%, white solid. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm $(J, \mathrm{~Hz}): 8.82$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{NH}) ; 7.30(1 \mathrm{H}, \mathrm{s}, \mathrm{H} \mathrm{Ar}) ; 7.20-7.05(5 \mathrm{H}, \mathrm{m}$, H Ar); $6.96(1 \mathrm{H}, \mathrm{dd}, J=8.4, J=2.0, \mathrm{H} \mathrm{Ar}) ; 6.61(1 \mathrm{H}, \mathrm{d}$, $J=8.4, \mathrm{H} \mathrm{Ar}) ; 4.64(1 \mathrm{H}, \mathrm{d}, J=6.6,11-\mathrm{CH}) ; 4.02(2 \mathrm{H}, \mathrm{dd}$, $\left.J=35.5, J=13.9, \mathrm{NCH}_{2}\right) ; 3.49-3.38$ ($2 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}, 11 \mathrm{a}-\mathrm{CH}$); 2.85 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$); $1.90\left(1 \mathrm{H}, \mathrm{dd}, J=14.0, J=6.4, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $1.68\left(1 \mathrm{H}\right.$, dd, $\left.J=14.0, J=6.2, \mathrm{CH}_{\mathrm{B}} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1.58(1 \mathrm{H}$, dt, $\left.J=13.1, J=6.5, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.83(3 \mathrm{H}, \mathrm{d}, J=6.7$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.79\left(3 \mathrm{H}, \mathrm{d}, J=7.0, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR
spectrum, δ, ppm: $179.0 ; 174.1 ; 167.8 ; 134.4 ; 133.8 ; 129.3$; $129.0 ; 128.9 ; 128.5 ; 127.9 ; 126.8 ; 124.1 ; 116.9 ; 69.6 ; 57.3$; 51.0; 48.2; 43.9; 42.3; 24.9; 24.2; 23.6. Found, m/z: $437.1625[\mathrm{M}]^{+} . \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{3}$. Calculated, $m / z: 437.1585$.

Compound 1 k was obtained using amino acid ester hydrochloride 2c, aldehyde 3a, and maleimide 4e. Yield 76%, white solid. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm ($J, \mathrm{~Hz}$): 8.97 $(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{NH}) ; 7.32(1 \mathrm{H}, \mathrm{d}, J=7.7, \mathrm{H} \mathrm{Ar}) ; 7.18-7.13$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 7.11-7.07(3 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 6.97(1 \mathrm{H}, \mathrm{t}$, $J=7.5, \mathrm{H} \mathrm{Ar}) ; 6.78(1 \mathrm{H}, \mathrm{d}, J=7.8, \mathrm{H} \mathrm{Ar}) ; 4.67(1 \mathrm{H}, \mathrm{t}$, $J=7.4,11-\mathrm{CH}) ; 3.87\left(2 \mathrm{H}, \mathrm{d}, J=8.4, \mathrm{NCH}_{2}\right) ; 3.49-3.43$ $(2 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}, 11 \mathrm{a}-\mathrm{CH}) ; 2.97(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; 1.87(1 \mathrm{H}, \mathrm{dd}$, $\left.J=14.1, J=6.3, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1.66(1 \mathrm{H}, \mathrm{dd}, J=14.1$, $\left.J=6.4, \mathrm{CH}_{\mathrm{B}} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1.54(1 \mathrm{H}, \mathrm{tt}, J=13.1, J=6.5$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.81\left(3 \mathrm{H}, \mathrm{d}, J=6.6, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.74(3 \mathrm{H}, \mathrm{d}$, $\left.J=6.6, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: 179.6; 174.3; 168.4; 135.4; 134.8; 129.3; 128.7; 128.4; 127.7; 126.5; 123.8; 122.3; 115.9; 69.3; 57.4; 50.8; 48.4; 44.0; 42.0; 24.8; 24.1; 23.6. Found, $m / z: 403.1968[\mathrm{M}]^{+} . \mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}$. Calculated, m / z : 403.1975 .

Compound 11 was obtained using amino acid ester hydrochloride 2d, aldehyde 3a, and maleimide 4e. Yield 62%, off-white solid. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm ($J, \mathrm{~Hz}$): $10.19(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{NH}) ; 7.32(1 \mathrm{H}, \mathrm{t}, J=10.6, \mathrm{H} \mathrm{Ar}) ; 7.18-$ $7.11(3 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 7.09(1 \mathrm{H}, \mathrm{t}, J=7.6, \mathrm{H} \mathrm{Ar}) ; 6.93-6.80$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}$ Ar); 6.73 ($1 \mathrm{H}, \mathrm{t}, J=10.6$, H Ar); 5.32-5.26 (1H, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right) ; 4.54(1 \mathrm{H}, \mathrm{dt}, J=13.2, J=6.6,11-\mathrm{CH}) ; 3.93-$ $3.84(2 \mathrm{H}, \mathrm{m}) ; 3.80-3.77(1 \mathrm{H}, \mathrm{m}) ; 3.75(1 \mathrm{H}, \mathrm{t}, J=5.2) ; 3.58-$ $3.47(2 \mathrm{H}, \mathrm{m}) ; 3.18-3.10(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $179.1 ; 175.3 ; 167.7 ; 137.1 ; 135.8 ; 128.9 ; 128.7 ; 127.5$; $127.4 ; 127.2 ; 123.6 ; 122.7 ; 115.5 ; 71.9 ; 62.9 ; 58.3 ; 49.9$; 48.0. Found, m / z : $377.1432[\mathrm{M}]^{+} . \mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$. Calculated, m/z: 377.1455.

Compound 1m was obtained using amino acid ester hydrochloride 2e, aldehyde 3a, and maleimide $\mathbf{4 f}$. Yield 59%, white solid. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm ($J, \mathrm{~Hz}$): 8.89 $(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{NH}) ; 7.40(1 \mathrm{H}, \mathrm{t}, J=11.5, \mathrm{H} \mathrm{Ar}) ; 7.34-7.19$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 7.20-7.08(4 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 7.00(1 \mathrm{H}, \mathrm{dd}$, $J=16.8, J=9.9$, H Ar); $6.72(1 \mathrm{H}, \mathrm{d}, J=7.8, \mathrm{H} \mathrm{Ar}) ; 6.15$ $(2 \mathrm{H}, \mathrm{dd}, J=8.0, J=1.3, \mathrm{H} \mathrm{Ar}) ; 4.69(1 \mathrm{H}, \mathrm{d}, J=7.3$, $11-\mathrm{CH}) ; 3.69(1 \mathrm{H}, \mathrm{t}, J=8.8,3 \mathrm{a}-\mathrm{CH}) ; 3.43(1 \mathrm{H}, \mathrm{d}, J=13.3$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right) ; 3.35(1 \mathrm{H}, \mathrm{dd}, J=10.2, J=7.3,11 \mathrm{a}-\mathrm{CH}) ; 3.05$ $\left(1 \mathrm{H}, \mathrm{d}, J=13.3, \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $178.7 ; 173.2 ; 167.8 ; 135.7 ; 134.2 ; 131.0 ; 130.1 ; 129.4$; $128.9 ; 128.7 ; 128.6 ; 127.8 ; 127.0 ; 126.2 ; 124.2 ; 122.4$; 116.2; 70.6; 58.2; 50.0; 48.1; 41.4. Found, $m / z: 423.1672$ $[\mathrm{M}]^{+} . \mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$. Calculated, m / z : 423.1662 .

Compound 1n was obtained using amino acid ester hydrochloride 2e, aldehyde 3a, and maleimide 4b. Yield 67%, white solid. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm ($J, \mathrm{~Hz}$): 8.86 $(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{NH}) ; 7.35(1 \mathrm{H}, \mathrm{d}, J=7.6, \mathrm{H} \mathrm{Ar}) ; 7.28-7.16$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 7.12(1 \mathrm{H}, \mathrm{t}, J=7.6, \mathrm{H} \mathrm{Ar}) ; 6.97(1 \mathrm{H}, \mathrm{t}$, $J=7.5, \mathrm{H} \mathrm{Ar}) ; 6.73(1 \mathrm{H}, \mathrm{d}, J=7.8, \mathrm{H} \mathrm{Ar}) ; 4.64(1 \mathrm{H}, \mathrm{d}$, $J=7.4,11-\mathrm{CH}) ; 3.49(1 \mathrm{H}, \mathrm{d}, J=10.4,3 \mathrm{a}-\mathrm{CH}) ; 3.24(1 \mathrm{H}$, d, $\left.J=13.5, \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right) ; 3.15(1 \mathrm{H}, \mathrm{dd}, J=10.2, J=7.4$, $11 \mathrm{a}-\mathrm{CH}) ; 3.03\left(1 \mathrm{H}, \mathrm{d}, J=13.5, \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right) ; 2.86(2 \mathrm{H}, \mathrm{q}$, $\left.J=7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.83(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; 0.36(3 \mathrm{H}, \mathrm{t}, J=7.2$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: 179.4; 173.8; 168.0; $135.4 ; 134.2 ; 130.0 ; 129.3 ; 128.9 ; 127.7 ; 126.8 ; 123.9$;
$122.4 ; 115.9 ; 70.3 ; 58.0 ; 49.9 ; 48.0 ; 40.9 ; 33.5 ; 11.5$. Found, $m / z: 375.1678[\mathrm{M}]^{+} . \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$. Calculated, m / z : 375.1662 .

Compound 10 was obtained using amino acid ester hydrochloride 2b, aldehyde 3a, and maleimide $\mathbf{4 e}$. Yield 80%, white solid. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm $(J, \mathrm{~Hz}): 9.26$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{NH}) ; 7.33(1 \mathrm{H}, \mathrm{d}, J=7.7$, H Ar); 7.18-7.11 $(3 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 7.11-7.02(3 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 6.94(1 \mathrm{H}, \mathrm{td}$, $J=7.6, J=0.9, \mathrm{HAr}) ; 6.80(1 \mathrm{H}, \mathrm{d}, J=7.3, \mathrm{HAr}) ; 4.70$ $(1 \mathrm{H}, \mathrm{d}, J=6.3,11-\mathrm{CH}) ; 3.97-3.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right) ; 3.44-$ $3.34(2 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}, 11 \mathrm{a}-\mathrm{CH}) ; 2.91(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; 1.94(1 \mathrm{H}, \mathrm{dq}$, $\left.J=14.8, J=7.4, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{3}\right) ; 1.78(1 \mathrm{H}, \mathrm{dq}, J=14.7, J=7.4$, $\left.\mathrm{CH}_{\mathrm{B}} \mathrm{CH}_{3}\right) ; 0.82\left(3 \mathrm{H}, \mathrm{t}, J=7.4, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $179.6 ; 174.4 ; 168.4 ; 135.5 ; 135.0 ; 129.3$; $128.5 ; 128.4 ; 127.7 ; 126.5 ; 123.8 ; 122.4 ; 116.0 ; 70.1 ; 57.9$; 50.2; 48.3; 42.0; 28.3; 8.4. Found, $m / z: 375.1678[\mathrm{M}]^{+}$. $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$. Calculated, m/z: 375.1662.

Supplementary information file containing ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the synthesized compounds is available at the journal website at http://link.springer.com/journal/10593.

References

1. Reviews on 1,3-dipolar cycloadditions: (a) Synthetic Application of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products; Padwa, A.; Pearson, W. H., Eds.; Wiley: Hoboken, 2003. (b) Kantorowski, E. J.; Kurth, M. J. Mol. Diversity 1997, 2, 207. (c) Nájera, C.; Sansano, J. M. Curr. Org. Chem. 2003, 7, 1105. (d) Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765. (e) Rück-Braun, K.; Freysoldt, T. H. E.; Wierschem, F. Chem. Soc. Rev. 2005, 34, 507. (f) Harju, K.; Yli-Kauhaluoma, J. Mol. Diversity 2005, 9, 187. (g) Medvedeva, S. M.; Shikhaliev, K. S. Chem. Heterocycl. Compd. 2016, 52, 687. [Khim. Geterotsikl. Soedin. 2016, 52, 687.] (h) Padwa, A.; Bur, S. Chem. Heterocycl. Compd. 2016, 52, 616. [Khim. Geterotsikl. Soedin. 2016, 52, 616.]
2. Reviews on fluorous technology facilitated synthesis: (a) Zhang, W. Tetrahedron 2003, 59, 4475. (b) Zhang, W. Chem. Rev. 2004, 104, 2531. (c) Zhang, W.; Curran, D. P. Tetrahedron 2006, 62, 11837. (d) Zhang, W. Chem. Rev. 2009, 109, 749. (e) Kadam, A.; Ding, S.; Piqani, B.; Zhang, W. J. Chin. Chem. Soc. 2011, 58, 575.
3. Fluorous MCRs: (a) Kadam, A.; Zhang, Z.; Zhang, W. Curr. Org. Synth. 2011, 8, 295. (b) McKeown, M. R.; Shaw, D. L.; Fu, H.; Liu, S.; Xu, X.; Marineau, J. J.; Huang, Y.; Zhang, X.;

Buckley, D. L.; Kadam, A.; Zhang, Z.; Blacklow, S. C.; Qi, J.; Zhang, W.; Bradner, J. E. J. Med. Chem. 2014, 57, 9019. (c) Kadam, A.; Bellinger, S.; Zhang, W. Green Process. Synth. 2013, 2, 491. (d) Zhang, W. Comb. Chem. High Throughput Screen. 2007, 10, 219. (e) Lu. Y.; Zhang, W. QSAR Comb. Sci. 2004, 23, 827.
4. Selected examples of PASE synthesis: (a) Clarke, P. A.; Santos, S.; Martin, W. H. C. Green Chem. 2007, 9, 438. (b) Prasanna, P.; Perumal, S.; Menéndez, J. C. Green Chem. 2013, 15, 1292. (c) Hayashi, Y.; Umemiya, S. Angew. Chem., Int. Ed. 2013, 52, 3450. (d) Bhuyan, D.; Sarma, R.; Dommaraju, Y.; Prajapati, D. Green Chem. 2014, 16, 1158.
5. Zhang, W. Chem. Lett. 2013, 42, 676.
6. Zhang, W.; Lu, Y.; Chen, C. H.-T.; Curran, D. P.; Geib, S. Eur. J. Org. Chem. 2006, 2055.
7. Werner, S.; Nielsen, S. D.; Wipf, P.; Turner, D. M.; Chambers, P. G.; Geib, S. J.; Curran, D. P.; Zhang, W. J. Comb. Chem. 2009, 11, 452.
8. Lu, Q.; Huang, X.; Song, G.; Sun, C.-M.; Jasinski, J. P.; Keeley A. C.; Zhang, W. ACS Comb. Sci. 2013, 15, 350.
9. Lu, Q.; Song, G.; Jasinski, J. P.; Keeley, A. C.; Zhang, W. Green Chem. 2012, 14, 3010.
10. Zhang, X.; Pham, K.; Liu, S.; Legris, M.; Muthengi, A; Jasinski, J. P.; Zhang, W. Beilstein J. Org. Chem. 2016, 12, 2204.
11. Zhang, X.; Zhi, S.; Wang, W.; Liu, S.; Jasinski, J. P.; Zhang, W. Green Chem. 2016, 18, 2642.
12. Coleman, P. J.; Schreier, J. D.; Roecker, A. J.; Mercer, S. P.; McGaughey, G. B.; Cox, C. D.; Hartman, G. D.; Harrell, C. M.; Reiss, D. R.; Doran, S. M.; Garson, S. L.; Anderson, W. B.; Tang, C.; Prueksaritanont, T.; Winrow, C. J.; Renger, J. J. Bioorg. Med. Chem. Lett. 2010, 20, 4201.
13. Loriga, G.; Lazzari, P.; Manca, I.; Ruiu, S.; Falzoi, M.; Murineddu, G.; Bottazzi, M. E. H.; Pinna, G.; Pinna, G. A. Bioorg. Med. Chem. 2015, 23, 5527.
14. Jensen, S. B.; Bender, D.; Smith, D. F.; Scheel-Krüger, J.; Nielsen, E. Ø.; Olsen, G. M.; Peters, D.; Gjedde, A. J. Label. Compd. Radiopharm. 2002, 45, 181.
15. Zhang, Y.; Rothman, R. B.; Dersch, C. M.; de Costa, B. R.; Jacobson, A. E.; Rice, K. C. J. Med. Chem. 2000, 43, 4840.
16. Mcguirk, P. R.; Jefson, M. R.; Mann, D. D.; Elliott, N. C.; Chang, P.; Cisek, E. P.; Cornell, C. P.; Gootz, T. D.; Haskell, S. L.; Hindahl, M. S.; LaFleur, L. J.; Rosenfeld, M. J.; Shryock, T. R.; Silvia, A. M.; Weber, F. H. J. Med. Chem. 1992, 35, 611.
17. Allan, K. M.; Stoltz, B. M. J. Am. Chem. Soc. 2008, 130, 17270.
18. Blaney, P.; Grigg, R.; Rankovic, Z.; Thornton-Pett, M.; Xu, J. Tetrahedron 2002, 58, 1719.
19. Zhang, W.; Chen, C. H.-T Tetrahedron Lett. 2005, 46, 1807.

[^0]: * Using 2-azidobenzaldehydes 3a,c,f.
 ** Using 2-nitrobenzaldehydes 3b,d,e.

