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ABSTRACT 

The Outpatient Department (OPD) is the initial point of contact for all patients, and the 

level of treatment received at OPD influences their perception of the hospital. 

Turnaround time substantially influence the quality of service offered to the patients 

and thus patients satisfaction increased. The Kenyan government has implemented 

several actions and programs to strengthen the health sector, including the Kenya 

Health Policy 2014-2030 and the Sustainable Development Goals. To achieve these 

interventions, establishing an accurate and effective forecasting model is necessary. The 

study aimed to fit a Statistical model to forecast outpatient attendance at Marimanti 

Level 4 Hospital using SARIMA modeling. The objectives were to; establish the trend 

and seasonal effects in Outpatient attendance at Marimanti Level 4 Hospital in the past 

10 years, fit a SARIMA model using outpatient attendance data at Marimanti Level 4 

Hospital and forecast the Outpatient Visits at Marimanti Level 4 hospital for the next 2 

year. The study used monthly outpatient visit data from Marimanti level 4 hospital 

(January 2013 to December 2023). The study contributes to the literature on SARIMA 

modeling, aids in balance work schedule, increased patient safety and resource 

allocation.  Data analysis was carried out using R and R Studio version 4.4.1. The 

outpatient visits series at Marimanti level 4 hospital is seasonal. The study used the 

Box-Jenkins technique in modelling. SARIMA (0,1,2) (2,1,1)12 emerged as the most 

plausible model (AIC = 1139.56, BIC = 1154.52). The forecasting accuracy of the 

model was assessed using MAPE = 1.66% and MASE = 0.47%. Overall, the two-year 

prediction showed an increasing number of outpatient visits at Marimanti level 4 

hospital. As a result, the hospital Management ought to take into consideration the 

forecasts to enable them prepare adequately in terms of resource allocation and 

planning purposes, continuous data collection and analysis to keep the model up-to 

date. The study recommends; further studies on OPD using machine learning models, 

continuous updating of the model to ensure any emerging pattern in the data series is 

captures, finally, the hospital management should rely on the forecasts for planning 

activities. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

According to Jonathan & Kung, (2008), time series data is a sequential arrangement of 

observations over time. Recently, time series models have received more attention, in 

health sector, it is used to predict medical services demand, including patient 

attendance, hospital release, bed demand or turnaround time (Kadri et al., 2014). 

According to Aboagye et al., (2015) time series modeling is crucial for health care 

administrators to better understand the characteristics and the nature of the variation. 

Because the ARIMA model captures linear patterns in data with least computational 

effort, most research utilize it to characterize the relationship among variables or as a 

benchmark to measure the efficacy of combination models. ARIMA models have a wide 

range of application in projecting hospital daily visits to Outpatient and Emergency 

Departments due to its efficiency in capturing linear properties of trend (Bergs et al., 

2014). 

Based on monthly data, Permanasari et al., (2013) examined and applied SARIMA 

modelling to project the prevalence of Malaria. The ability to forecast diseases is crucial 

for management decision-making about resource allocation and workload scheduling. 

Dabral & Murry, (2017) utilized SARIMA model to simulate and predict rainfall time 

series. SARIMA Model is important in modelling and forecasting because of its ability 

to extract linear pattern from complex data and simplicity in its computations to achieve 

desired outcome, saving time and effort.  

According to Slawomirski et al., (2017) low quality of healthcare leads to increase in 

disease burden, unmet medical need and has enormous cost repercussions for local 

communities and the global health system. Trillions of dollars are spent each year on 

patient harm from life-time impairments, disabilities, and productivity loss. The 

underprivileged groups in society are disproportionately affected by low quality 

treatment. 

The model's capacity to successfully handle seasonality and trends is shown by 

empirical assessments of SARIMA modeling's performance in forecasting hospital 

outpatient visits. To predict outpatient visits and optimize resource allocation, SARIMA 

models have been used in a variety of healthcare settings around the world. Studies 
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conducted in nations such as USA, China and India have shown that SARIMA 

effectively captures the cyclical and seasonal patterns in outpatient data, enhancing 

staffing and supply planning. SARIMA was used to an electronic health record dataset 

for outpatient predictions at India's L.V. Prasad Eye Institute, producing accurate 

forecasts that are essential for effective resource management in the provision of 

eyecare services. Seasonal changes were effectively addressed by the SARIMA model, 

which had parameters adjusted to match the observed monthly and annual visit patterns 

at this sizable tertiary network (Sai et al., 2021) 

One of the most important objectives that is guaranteed in the Sustainable Development 

Goals (SDGs) is universal health coverage (UHC). UHC seeks to enable a transition 

towards more equitable and efficient countries and economies by offering safe 

healthcare to individuals of all ages and ensuring that everyone has access to essential 

medical care without facing financial hardship (WHO, 2018). A great opportunity exists 

for nations with low or middle-incomes to address the quality while constructing UHC. 

It is possible to influence, guide, and foster a developing health system in the way that 

is wanted. Quality can become embedded in the system's structure, protocols, and 

regulations as it grows and evolves. Although providing everyone with high-quality 

medical care might seem unattainable, it is feasible in all situations with the right 

administration, careful planning, and financial support. For instance, due to a policy 

that incorporates communities and people in the design of the healthcare service, 

Uganda has seen improvements in all indicators, including a 33% fall in child mortality 

(OECD et al., 2018). As a result of the UHC roll out, patients seeking healthcare 

increases and therefore, having a precise model informs the hospital management’s 

decision making and planning to guarantee effective, efficient and economic   resource 

mobilization and services provided.       

Procedures and therapies that do not require patients to remain in the procedure site for 

further monitoring or care are referred to as outpatient care. Pharmacies, specialty 

outpatient centers, and emergency rooms are some of the establishments that offer 

outpatient therapy. Outpatient care services account for a number of different 

procedures, tests, and treatments which a patient can receive. They include; Services 

for prevention and well-being including psychological support, instruction on nutrition, 

a weight reduction program and counseling on diets, diagnostic procedures such as 
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(scanning and lab examinations) and rehabilitation services: Physical and occupational 

therapy. 

Hospitalists experience daily workload changes, some of which are unpredictable. The 

hospital administration employs a variety of reactive strategies to match workforce 

level to workload. While overstaffing is expensive and unsustainable, understaffing can 

have a negative influence on patient safety and hospitalists’ job satisfaction. A better 

understanding of when patient will visit might help with scheduling and staffing 

decisions, resulting in a better workload, increased job satisfaction for the hospitalists, 

and improved patient safety. 

Marimanti level 4 hospital is a public health facility in Kenya. It is a primary care 

hospital located in Marimanti ward, Tharaka Constituency, Tharaka South Sub-County, 

Tharaka Nithi County along Chiakariga – Marimanti road near Marimanti Market. 

There are 39058 women and 36,190 men in the hospital's 75,250-person catchment 

area, with a fertility rate of 2.9 births per woman. Compared to the overall crude death 

rate of 10.5 deaths per 1000 population in Kenya, Tharaka Nithi County crude death 

rate of 10.6 deaths per 1000 population is higher. The majority of people reside in rural 

areas. 

There is few empirical research on application of SARIMA model in healthcare settings 

in Kenya, comparable approaches have been investigated for healthcare metrics 

forecasting, suggesting that local adoption may be possible. SARIMA's capacity to 

model recurrent seasonal variations should be advantageous for Kenyan healthcare 

facilities dealing with varying outpatient volumes. By matching resources to anticipated 

outpatient visit numbers, SARIMA enables local facilities to manage costs effectively. 

This is especially true for facilities that have digitized patient data accessible for model 

training. 

1.2 Statement of the Problem 

Patients always fashion out the hospital by the service they receive at the Outpatient 

Department. The quality of service largely depends on the time a patient takes to receive 

the service (Turn-around time). Long waiting time is perceived by the patient as the 

hindrance to getting the service and may hurt the patient’s attitude towards the hospital. 

Currently, health services received by patients in the many public hospitals are not 

encouraging because of long queue, inadequate supplies and under staffing. The 
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recently launched Universal Health Coverage (UHC) program and the establishment of 

Tharaka University within the catchment population of the Marimanti Level 4 hospital, 

there is an anticipated increase in outpatient visits. Therefore, having a precise model 

that can project the expected number of outpatient visits in future is important. The 

forecasts aids Hospital management in proper planning in terms of staffing, workload 

scheduling, training and allocation of resources, this necessitated the endeavor. 

 1.3. Purpose of the Study. 

The study's goal was to forecast outpatient visits at Marimanti Level 4 Hospital by 

employing the SARIMA model for time series analysis.  

1.4. Specific Objective. 

The execution of this study was based on the following stated objectives.  

i. Establish the trend and seasonal effects in Outpatient visits at Marimanti 

Level 4 Hospital in the past 10 years. 

ii. Fit a SARIMA model using Outpatient attendance data at Marimanti Level 

4 Hospital. 

iii. Forecast the Outpatient Visits at Marimanti Level 4 hospital for the next 2 

year. 

1.5. Research Questions 

i. Are there regular patterns in Outpatient attendance at Marimanti Level 4 

hospital? 

ii. Is it possible to empirically model the outpatient visit data? 

iii. What is the expected number of outpatient visits in the next 2 years? 

1.6. Significance of the Study  

The fitted model was used to explain the hospital Outpatient attendance and to project 

the expected patient volumes for 2 years ahead, which provided a basis of improving 

staffing and scheduling decision to provide a better workload balance and improve job 

satisfaction of the hospitalist as well as improving patients’ safety. The forecasts aids in 

decision making on allocation of resources and improving hospital’s processes. 

This research work adds to a pool of information available on modelling hospital OPD 

attendance and the study finding forms the foundation for future research. The research 

provided recommendations for further improvement in future. 
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This research work provides an evident based decision making upon which policies are 

built on. This ensures quality is entrenched in regulations, procedures, and policies to 

guarantee high quality of healthcare provided. 

The primary beneficiaries of this research are the patients. The findings offer insights 

to hospital management for planning purposes such as resource allocation, training, 

recruiting, and workload balancing, which impact positively on the services provided 

to patients, leading to increased satisfaction and patient safety. 

1.7. The Scope of the Study 

Secondary data on monthly outpatient attendance at Marimanti Level 4 Hospital was 

used in this study. The data covered eleven-year span, from January, 2013 to December, 

2023.  SARIMA model was developed and used to predict outpatient attendance for the 

next two years. R and R- Studio software version 4.4.1 was used in the analysis. The 

research period was chosen to assess how devolution has impacted the health sector in 

the country. 

1.8. Assumption of the Study 

The Outpatient visit is stochastic process. Since the study used the secondary data on 

Outpatient attendance, it is assumed that the data was accurate and authentic to make 

inference. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Time series models is covered in this chapter, along with research that has effectively 

used SARIMA to forecast outcomes. The SARIMA model was used to model the 

outpatient attendance data at Marimanti Level 4 Hospital and make forecasts. 

2.2. Time Series Model 

2.2.1. Autoregressive Process AR (p) 

A 𝑝𝑡ℎorder autoregressive process 𝑋𝑡 satisfy the equation. 

 𝑋𝑡 = 
1
𝑥𝑡−1 + 

2
𝑥𝑡−2 +⋯+ 

𝑝
𝑥𝑡−𝑝 + 𝑒𝑡  (2.1) 

Where 𝑒𝑡 is Gaussian White Noise and is independent of 𝑥𝑡−1, 𝑥𝑡−2 · · ·, 𝑥𝑡−𝑝 and 
1
,…, 


𝑝
 are the coefficients. 

The present value of the sequence 𝑋𝑡 is a regression of the latest 𝑝 values on itself with 

the innovation of an error component 𝑒𝑡, which includes anything new in the process at 

𝑡 not accounted for by the previous values. The statistical features of the AR (p) process 

are as follows; 

Mean: 

 (𝑋𝑡) = 0 

Variance: 

 
𝑣𝑎𝑟(𝑋𝑡) =

𝛿2

(1 − 2)
 

(2.2) 

 

Autocorrelation: 

 (ℎ) =
𝑅(ℎ)

𝑅(0)
 , 

Where 𝑅(ℎ) is the autocovariance and 𝑅(0) is the variance. 

 𝜌(ℎ) = 
1
(ℎ − 1) + 

2
(ℎ − 2) + ⋯+ 

𝑝
(ℎ − 𝑝) (2.3) 

For 𝑘 ≥  1 

The Yule Walker equation, an even difference equation, is represented as equation (2.3). 

We use 𝜌(ℎ) = Zℎ  as the trial solution to get the matching solutions. 
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Zℎ = 
1
𝑍ℎ−1 + 

2
𝑍ℎ−2 +⋯+ 

𝑝
𝑍ℎ−𝑝 

 𝑍ℎ − 
1
𝑍ℎ−1 − 

2
𝑍ℎ−2 −⋯− 

𝑝
𝑍ℎ−𝑝 = 0 

 𝑍ℎ−𝑝 (𝑍𝑝 − 
1
𝑍𝑝−1 − 

2
𝑍𝑝−2 −⋯− 

𝑝
) = 0 

𝑍ℎ−𝑝 ≠ 0, therefore 

  𝑍𝑝 − 
1
𝑍𝑝−1 − 

2
𝑍𝑝−2 −⋯− 

𝑝
= 0 (2.4) 

Which is the characteristic equation. 

The AR (p) process is stable if all the solutions of equation (2.4) lie outside the unit 

circle. 

Employing the backward shift operator (G) on the equation (2.1), the AR process can 

be expressed as; 

𝑋𝑡 = 
1
𝑥𝑡−1 + 

2
𝑥𝑡−2 +⋯+ 

𝑝
𝑥𝑡−𝑝 + 𝑒𝑡 

𝑋𝑡 − 
1
G𝑋𝑡 − 

2
G2𝑋𝑡 −⋯− 

𝑝
G𝑝𝑋𝑡 = 𝑒𝑡 

(1 − 
1
G − 

2
G2 −⋯− 

𝑝
G𝑝)𝑋𝑡 = 𝑒𝑡 

 𝑋𝑡 =
𝑒𝑡

(1 − 
1
G − 

2
G2 −⋯− 

𝑝
G𝑝)

  (2.5) 

Case of AR (1) process 

AR (1) is given as; 

𝑋𝑡 =
𝑒𝑡

(1 − G)
 

      =  𝑡(1 + G + 2G2 +⋯) 

 
=∑𝑖

∞

𝑖=0

𝑒𝑡−𝑖  
 

(2.6) 
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The mean; 

𝐸(𝑋𝑡) = 𝐸 (∑ 𝑖
∞

𝑖=0

𝑒𝑡−𝑖) 

=∑𝑖
∞

𝑖=0

𝐸(𝑒𝑡−𝑖) 

 = 0 (2.7) 

The variance; 

𝑉𝑎𝑟 (𝑋𝑡) = 𝑉𝑎𝑟 (∑𝑖
∞

𝑖=0

𝑒𝑡−𝑖) 

 =  ∑2𝑖
∞

𝑖=0

 𝑉𝑎𝑟(𝑒𝑡−𝑖) 

= 2∑ 2𝑖
∞

𝑖=0

 

= 2(1 + 2 + 4 + 6 +⋯) 

 
=

2

(1 − 2)
 

(2.8) 

Autocovariance function (ACVF); 

𝐶𝑜𝑣(𝑋𝑡, 𝑋𝑡+ℎ) = 𝑅(ℎ) = 𝐸 (∑ 𝑖
∞

𝑖=0

𝑒𝑡−𝑖)(∑ 𝑙
∞

𝑙=0

𝑒𝑡+ℎ−𝑙) 

=∑∑𝑖
∞

𝑙=0

𝑙

∞

𝑖=0

𝐸(𝑒𝑡−𝑖, 𝑒𝑡+ℎ−𝑙) 

By letting 𝑙 = 𝑖 + ℎ we have; 

=∑2𝑖
∞

𝑖=0

ℎ𝐸(𝑒𝑡−𝑖, 𝑒𝑡−𝑖) 

= 2ℎ∑ 2𝑖
∞

𝑖=0
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= 2ℎ(1 + 2 + 4 + 6 +⋯) 

 
=

2ℎ

(1 − 2)
 

(2.9) 

Autocorrelation function (ACF); 

 (ℎ) =
𝑅(ℎ)

𝑅(0)
  

=

2ℎ

(1 − 2)

2

(1 − 2)

 

 = ℎ (2.10) 

Where 𝑅(ℎ) is the autocovariance and 𝑅(0) is the variance, (Nyamao, 2014). 

2.2.2. Moving Average Process 

Consist of sequence of Gaussian  𝑒𝑡  . Where  𝑒𝑡~(0, 
2) 

MA (q) is denoted by; 

𝑋𝑡 = 𝑒𝑡 + 1𝑒𝑡−1 + 2𝑒𝑡−2 +⋯+ 𝑞𝑒𝑡−𝑞 

 

=∑ 𝑙

𝑞

𝑙=0

𝑒𝑡−𝑙  
(2.11) 

Mean:  

(𝑋𝑡) = 𝐸 (∑ 𝑙

𝑞

𝑙=0

𝑒𝑡−𝑙) 

=∑ 𝑙

𝑞

𝑙=0

𝐸(𝑒𝑡−𝑙) 

 = 0  (2.12) 
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Variance: 

𝑉𝑎𝑟 (𝑋𝑡) =  𝑉𝑎𝑟 (∑ 𝑙

𝑞

𝑙=0

𝑒𝑡−𝑙) 

 

= 2∑𝜃𝑙
2

𝑞 

𝑙=0

 

(2.13) 

Autocorrelation: 

ρ(k) =

{
 
 

 
 1,                    𝑘 = 0

∑ 𝑙𝑙+𝑘
𝑞−𝑘
𝑙=0

∑ 𝑙
𝑞
𝑙=0

,     0 ≤ 𝑘 ≤ 𝑞

𝑜,                       𝑘 >  q

 

Where ρ(k)is the autocorrelation. Using the backshift Operator to equation (2.11) we 

have; 

𝑋𝑡 = 𝑒𝑡 + 1G𝑒𝑡 + 2G
2𝑒𝑡 +⋯+ 𝑝G

𝑞𝑒𝑡 

     = (1 + 1G + 2G
2 +⋯+ 𝑞G

𝑞)𝑒𝑡  

 = (G)𝑒𝑡  (2.14) 

Where (G) = 1 + 1G + 2G
2 +⋯+ 𝑞G

𝑞is a polynomial of order 𝑞 in 𝐺. 

2.2.3. Autoregressive Moving Average (ARMA) Process  

The following is the generic ARMA (p, q) equation; 

 𝑋𝑡 = 
1
𝑋𝑡−1 + 

2
𝑋𝑡−2 +⋯+ 

𝑝
𝑋𝑡−𝑝 + 𝑒𝑡 + 1𝑒𝑡−1 + 2𝑒𝑡−2 +⋯

+ 𝑞𝑒𝑡−𝑞 

(2.15) 

Where 𝑒𝑡 is Gaussian White Noise.  

Employing backshift operator (G) to equation (2.15) it reduces to; 

𝑋𝑡 − 
1
G𝑋𝑡 − 

2
G2𝑋𝑡 −⋯− 

𝑝
G𝑝𝑋𝑡 = 𝑒𝑡 + 1G𝑒𝑡 + 2G

2𝑒𝑡 +⋯+ 𝑞G
𝑞𝑒𝑡 

(1 − 
1
G − 

2
G2 −⋯− 

𝑝
G𝑝)𝑋𝑡 = (1 + 1G + 2G

2 +⋯+ 𝑞G
𝑞)𝑒𝑡 

 (G)𝑋𝑡 = (G)𝑒𝑡 (2.16) 

Where, 

(L) = 1 − 
1
G − 

2
G2 −⋯− 

𝑝
G𝑝 , and 
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() = 1 + 1G + 2G
2 +⋯+ 𝑞G

𝑞  

The Autoregressive (AR) component determines the process's stationarity, while the 

Moving Average (MA) component is taken into consideration for the process's 

invertibility, (Velicer & Molenaar, 2012). 

2.2.4. Autoregressive Integrated Moving Average (ARIMA) Process 

AR and MA models are combined using the integration approach in ARIMA (p, d, q). 

The letter I (integrated) indicates that an initial-order difference to make the series 

stationary because ARIMA modelling requires that the time series data be either stable 

or capable of becoming stationary, (Hyndman & Athanasopoulos, 2018).  

ARIMA (p, d, q) is represented; 

 (G)(1 − G)𝑑𝑋𝑡 = (G)𝑒𝑡 (2.17) 

Where (G) is an AR polynomial, (1 − G)𝑑is difference to detrend the outpatient series, 

(G) is a MA polynomial and 𝑒𝑡 is a White Noise, G is the backshift operator and 𝑑 

is the degree of differencing to render the series stationary. 

2.2.5. Seasonal Autoregressive Integrated Moving Average (SARIMA) Process 

When modelling data series that have both regular and periodic components, SARIMA 

(p, d, q) (P, D, Q) is used. The series' trend (p, d, q) is eliminated using trend difference, 

and its seasonality (P, D, Q) is eliminated using seasonal difference. The definition of 

the SARIMA (p, d, q) (P, D, Q)s model is; 

 
𝑝
(G)

𝑃
(G𝑠)(1 − G)𝑑(1 − G𝑠)𝐷𝑋𝑡 = 𝑞(G)𝛩𝑄(G

𝑠)𝑒𝑡 (2.18) 

𝑠 is the seasonality length and 𝑒𝑡 is a sequence of Gaussian white noise (Hyndman & 

Athanasopoulos, 2018). 

2.3. Stationarity and Invertibility 

2.3.1. Stationarity 

A stationary time series has no regular movement in its mean (Trend) or variances. 

Weakly Stationary: If a time series' average, variance, and autocovariance are not 

affected by time, it is stationary in the weak sense. Therefore, if 𝑋𝑡 is a time series that 

is defined for 𝑡 =  0, 1, 2,… Then, it is weakly stationary if; 

(𝑋𝑡) =  <  ,   𝑡   

The covariance 𝑐𝑜𝑣(𝑋𝑡, 𝑋𝑡+𝑘) = 𝑅(𝑘) < , 𝑘 =  1, 2, … 
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Strongly Stationary 

A time series 𝑋𝑡 is stationary in strong sense if its probability structure remains 

unchanged under a displacement in time. 

𝐹[𝑋𝑡1, 𝑋𝑡2, 𝑋𝑡3, … , 𝑋𝑡𝑛] = 𝐹[𝑋𝑡1+𝑘, 𝑋𝑡2+𝑘, 𝑋𝑡3+𝑘, … , 𝑋𝑡𝑛+𝑘] 

 𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛 and 𝑡1+𝑘, 𝑡2+𝑘, … , 𝑡𝑛+𝑘   𝑇, and 𝐹 is the cumulative distribution 

function. 

2.3.2. Invertibility 

Invertibility is a condition imposed to the constant to ensure that the MA process can 

be identified uniquely from a given ACF. Using the backshift operator, MA (q) process 

is expressed as in equation (2.14). To be invertible, all the solutions to the equation 

(𝐺) = 0, exceeds 1 in absolute value. And, 

 (𝐺) = 1 + 1𝐺 + 2𝐺
2 +⋯+ 𝑞𝐺

𝑞, exceeds 1 in absolute value. 

2.4. Box-Jenkins Procedure 

This prediction process, commonly referred to as the Box-Jenkins forecasting approach, 

is based on ARIMA models. Model identification, parameter estimates, diagnostic 

checks, and model validation are the four processes in the Box-Jenkins technique's 

model fitting process. 

2.4.1. Model Identification 

The appropriate member of the ARIMA process is determined by examining the data. 

This is revealed by the behavior of the ACF and the PACF to identify the model and the 

order. An AR (p) process' hypothetical PACF terminates after lag p, making the values 

that follow p insignificantly different from zero. This is summarized in the Figure 2.1. 
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Figure 2.1. Summary of model identification 

2.4.2. Estimation of Parameters 

After an appropriate model have been chosen, the parameters are estimated. The 

method of Maximum likelihood provides a unified and a practical approach to 

parameter estimation for ARMA (p, q) process. The method assumes that the white 

noise is Gaussian. 

2.4.3. Diagnostic Checking 

The selected model residuals are examined to assess whether the model is appropriate. 

This is done by studying the autocorrelation plots of the residual to see if a further 

structure can be found. 

2.4.4. Model Accuracy  

The mean square error (MSE) and mean absolute percentage error (MAPE) are 

measures to access model’s projecting reliability. MSE achieves the minimal error 

accuracy, hence it is commonly used to measure the efficacy and precision of statistical 

models (Prayudani et al., 2019). 

2.5. Modeling using Seasonal ARIMA Models 

A study was done by Otieno et al., (2014) to simulate the demand for hotel rooms 

among tourists in Kenya. A forecasting model was created using the Box-Jenkins model 

quarterly statistics on tourist bed use in Kenya between the year 1974 and 2011. 

Begin 

Plot a time series to check for 

stability 

Correlogram decay to zero 

ACF correlogram cuts off 

MA 

Partial correlogram 

cuts off  

AR 

Mixed 

ARMA  

Difference the 

data 
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SARIMA (1, 1, 2) (1, 1, 1)4 was selected and used to produce a forecast for the next 

five years. The investigator advises conducting the same study with monthly data. 

For 10-year period data from 2008 to 2017, Borbor et al., (2019) modeled historical 

monthly hospital attendance in Cape coast teaching Hospital for both Insured and 

Uninsured patients. The preferred models were SARIMA (1,0,0) (0,1,0)12 and SARIMA 

(1,1,1) (2,0,1)12 for Insured and Uninsured patients respectively, based on the minimum 

AIC values of 15.66537 and 13.94181 respectively. The models were used to generate 

forecast for the respective attendance in future. The research was conducted to ascertain 

how the Outpatient has impacted on patients’ attendance in seeking health care with 

time using time series analysis.  

Borbor, (2020) observed that Outpatient Hospital Attendance instances demonstrated 

variability of processes produced by several irregular factors that cannot be removed in 

cases recorded. The study found a candidate model that, on average, best fit the data. 

The ARIMA (2, 2, 1) model was found to be the most plausible for the Outpatient visits 

data. There was no seasonal pattern in the number of hospitals visits each month. The 

result indicated that over the anticipated time period, there was a rise in Outpatients’ 

attendance. 

Abu et al., (2022) set out a study to fit and forecast patient arrival at the University of 

Cape Coast Hospital Accident and Emergency Department (AED). The study found 

that the data on daily patient arrivals at the University hospital's AED had a considerable 

positive skewness. The study findings identified ARIMA (0, 1, 2) as the most optimal 

model for day patient visits at the university's hospital AED unit among the forefront 

twenty-five alternative models carefully picked. The findings revealed that a decreased 

trend in patients who arrived daily at the University’s hospital AED during both the 

research as well as predicted period.  

Kam et al., (2010) proposed three models to project daily patient visits to the 

Emergency Department (ED). (a.) Moving Average MA (2); (b.) Single-variate 

SARIMA model: SARIMA (1, 0, 1) (0, 1, 1)7; (c.) SARIMA (1,0,2) (0,1,1)7, a multi 

variate seasonal ARIMA model7. The Univariate and Multivariate Seasonal ARIMA 

models' residuals are uncorrelated, according to a diagnostic analysis of the models' 

residuals. Since it may reveal the relative degree of the forecasting error between the 
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predicted and observed values, Mean Absolute Percentage Error (MAPE) was selected 

as the metric to assess the model's prediction performance. The MAPEs of both 

SARIMA models are less than 10%, indicating acceptable precision. The ability to 

adjust seasonal components and incorporate autoregression makes the SARIMA 

models more accurate than the moving average. 

Mohamed & Mohamad, (2020) set out an empirical investigation to identify the best 

ARIMA model for predicting monthly attendance at orthopaedic clinics. The study 

made use of monthly data collected at an orthopaedic clinic between January 2013 and 

June 2018. The stationarity condition of the data was examined using the ACF and 

PACF graphs. The Box-Jenkins approach was used in the study to model the data. With 

the lowest mean absolute percentage error, ARIMA (1,0,0) was the most likely model. 

Mann-Kendall was thus utilized in this investigation to check for trends. Additionally, 

because SARIMA modelling can model data with both trend and seasonal components, 

it was used in the study. 

Arthur, (2013), conducted a study to predict outpatient department attendance at Salt 

Pond Municipal Hospital using statistical modelling. The analysis was done using the 

Box-Jenkins approach.  Ten SARIMA models were suggested; a critical analysis using 

the P-value and Chi-square statistic revealed that three models as the tentative models. 

SARIMA (1,1,3) (0,1,1)12 was judged to be the most plausible of the competing models 

due to its high p-value and low chi-square value. Further, model diagnostic checks using 

the PACF and ACF revealed that the residuals are White Noise and the residuals 

autocorrelations are all zero. 

Baharsyah & Nurmalasari, (2020), used ARIMA and ES to predict patient visits to the 

RSUD Kembangan emergency department. Monthly data from April 2015 through June 

2019 were used. The model's forecasting accuracy was assessed using MSE and MAPE. 

Because ARIMA (1,1,2) had the lowest MSE (22600.3) and MAPE (10.6), it was 

selected. On the other hand, because the data had a trend component (MSE 26900.6 and 

MAPE 11.8), exponential smoothing was chosen. ARIMA (1,1,2) was chosen as the 

most likely model to forecast patient visits to the emergency room of RSUD 

Kembangan Hospital based on the MSE and MAPE. 

Dan, (2014) employed SARIMA modelling to model and predict malaria death rates 

using time series analysis. From January 1996 to December 2013, the monthly malaria 
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death rate in Imo State was forecast using the Box-Jenkins approach. Estimating the 

monthly malaria fatality rate for 2014 was the aim of the study. From a group of 

tentative models, the best model was chosen using the Bayesian Information Criterion 

(BIC) and the Akaike Information Criterion (AIC). To ascertain whether the residual 

autocorrelation was zero, the Ljung-Box statistic was employed. The forecasting 

accuracy of the model was assessed using the mean absolute percentage error (MAPE). 

The most effective model for malaria mortality rate data was SARIMA (1,1,1) (0,0,1)12. 

MSE was utilized in this study to assess the accuracy of the model predicting. 

In China’s major hospitals, Luo et al., (2017) investigated a prediction method to 

forecast outpatient visits. In order to estimate short-term daily outpatient visits, they 

combined a SARIMA model with a Simple Exponential Smoothing (SES) model to 

evaluate the forecast accuracy for each model, as well as that of a combinatorial model. 

Consequently, all of the choice simulates are relatively easy to implement and have low 

computational needs, making them appropriate for quick prediction. When predicting 

daily outpatient visits one week in advance, the combinatorial model outperforms 

simple models and extracts more precise information with a limited training sample 

size.  

Ibrahim et al., (2016), did a study to fit SARIMA model on Peads patient visits at 

outpatient Medical Laboratory, Mayo Hospital Laboratory using the Box-Jenkins 

techniques. The study used quarterly data on patients visits for the period September, 

2007 to December, 2013. The ARIMA (1,1,1) and SARIMA (1,1,1) (1,0,1)4 after the 

diagnostic checks. Model validation found SARIMA model as the most plausible model 

predicting the expected number of patient visits more accurately since it models the 

seasonality in the data. The forecasts for the month of January, 2014 were 119 and 92 

using ARIMA and SARIMA respectively compared to the actual number of patient 

visits which is 102.     

In Des Moines, Lowa, USA, Choudhury & Urena (2020) set out a model for predicting 

hourly patient visits at a hospital emergency department. The plausible model was 

SARIMA (3, 0, 0) (2, 1, 0)24. The SARIMA model displayed the highest predicting 

accuracy, despite the fact that the TBATs and Neural Network models produce 

acceptable results. The study concluded that the ARIMA model can be used as a 

decision support tool in the emergency healthcare system. However, the study 
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recommends that future research take a broader perspective and incorporate outside 

forces such as environment and mobility into the model. Therefore, this study used 

monthly outpatient attendance data. 

A complex mathematical model for forecasting rail passenger flow was put out by 

Milenković et al., (2018). The best suitable SARIMA model for simulating rail 

passenger demand on Serbian railways is SARIMA (0, 1, 0) (0, 1, 1)12. The study 

developed the model from a monthly data from the Serbian railways. 

To forecast the number of people with different needs at the Veterans Health 

Administration clinic (USA), Al-Haque et al. (2015) fitted a SARIMA model in 

response to the seasonal demand for medical services from travelling patients. The 

forecasts aligned with the clinic's past patient demand trends. Based on historical 

patterns, it was projected that the need would peak in January 2013 with 359 expected 

patients. The number of patients was expected to have dropped to its lowest level by 

the summer of 2013 between May and June, which was also consistent with historical 

trends. When compared to historical average forecasts, the SARIMA model's RMSE 

was shown to be significantly lower. 

According to these studies, SARIMA is a flexible and trustworthy model for outpatient 

forecasting worldwide, and it has a good chance of being used in Kenya to enhance 

resource management and healthcare delivery. 
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CHAPTER THREE 

METHODOLOGY 

3.1. Location of the Study 

The study used data from Marimanti Level 4 Hospital Outpatient department, which is 

a primary care hospital in, Marimanti Ward, Tharaka Constituency, Tharaka South Sub-

County, Tharaka Nithi County (Kenya). Located at latitude 00 9’ 31” South; longitude 

370 58’ 31” East. It is situated in an ASAL area with an estimated terrain elevation of 

658 meters above the sea level. Marimanti Level 4 Hospital is appropriate for the study 

due to the increased catchment population as a result of the establishment of Tharaka 

University, which has student population increasing steadily. 

3.2. Research Design 

Time Series Research Design was employed in the study. This method of longitudinal 

research involves analyzing vast amounts of data collected over time on the same 

variable. The approach aids in identifying trends in the data set by basically plotting the 

data (time plot). Additionally, it provides the chance to clean the data by facilitating the 

easy identification of outliers and missing values, as well as the prediction by fitting 

the data to a model that best describes the observed time series. All the procedures 

involve simple computation saving on time and effort to achieve the desired result, thus 

convenient.  

3.3. Data Collection 

The research used monthly Outpatients visits data from Marimanti Level 4 Hospital 

over a period of 10 years (2013-2023). The monthly outpatients’ visits data was used to 

fit a SARIMA model. The period under study has 132 observation which is sufficient 

to fit the SARIMA model according to  Meyler et al. (1998), Chatfield (1996) who 

argued that 50 observations are sufficient to fit ARIMA model.   

3.4. Data Analysis 

Statistical Software R and R-Studio was used in the analysis, which is a free source 

software. The equation of SARIMA model as given in equation (2.18). SARIMA model 

is appropriate since it fit data with both trend and seasonality, it is accurate in short-

term forecasting and its procedures involves simple computations. 
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3.5. SARIMA Model 

3.5.1. Procedure for SARIMA Model 

The first step in modeling time series data is to ensure the series is stationary either by 

transformation of data or differencing. This study employed Augmented Dickey-Fuller 

(ADF) to test whether the outpatient series is stable and to determine the number of 

trend and seasonal differencing to achieve stationary.  

The Hyndman-Khandakar (HK) method was used with the forecast package in R, 

(Hyndman & Khandakar, 2008). The approach uses an iterative strategy that saves time 

and make it simple to identify appropriate model without having to compare it to every 

other model that might be used (Dabral & Tabing, 2020). Figure 3.1 summarizes 

SARIMA modeling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Flow chart of SARIMA modeling 

3.5.1.1. Test for trend in Time Series Data 

The Mann-Kendall (MK) test was used to determine if the outpatient visits series 

exhibit a monotonic upward or decreasing trend over time. MK, unlike parametric 

linear regression analysis, does not require the fitted line's residual be normally 

distributed. Kendall’s test ranks all the data by time order, the difference between 
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consecutive values is calculated and the sum of the signs of difference as the Kendall 

sum, S statistic, (Kendall, 1948). Mann-Kendall test trend component in time series 

data and has the following hypothesis. 

H0: The monthly outpatient attendance has no trend. 

H1: The monthly outpatient attendance has trend. 

The H0 is rejected if p-value < 5% level of significance (two-tailed), meaning there is a 

trend in the monthly outpatient attendance 

3.5.1.2. Test for Stationarity for Time Series Data 

Test for Stationarity is important in understanding the data and selecting the prediction 

model. This study will test for stationarity using the Augmented Dickey-Fuller (ADF) 

test. ADF is a unit root test. 

ADF test has the following hypothesis. 

H0: The monthly outpatient attendance series non stable. 

H1: The monthly outpatient attendance series is stable. 

The H0 is rejected if p-value < 5% level of significance, meaning the series has no unit 

root/the series is stationary, (Dickey & Fuller, 1979). 

3.5.1.3. Akaike Information Criteria (AIC) 

Akaike information criteria was developed by Hirotugu Akaike in 1974. Assuming 𝑋𝑡 

is an ARMA process, then, the AIC is defined as; 

 𝐴𝐼𝐶 =  −2 log[𝐿 (̑, ̑)] +  2𝑘  (3.19) 

Where 𝐿(̑, ̑) is the maximum likelihood function which measures a model fit. 𝑘 Is 

the number of parameters; it penalizes overfitting when more terms are added. 

Time series model with lowest AIC value is chosen. AIC favors an over fitted model 

for small samples (Claeskens & Hjort, 2009). Consequently, AICc was generated to 

address the overfitting for small sample size.  

AICc is defined as; 

 
𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +

2𝑘2 + 2𝑘

𝑛 − 𝑘 − 1
 

(3.20) 

where n is the number of observation and k is the number of parameters. 
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Burnham & Anderson. (2016) noted that the extra penalty term converges to zero as the 

sample size approaches infinity, leading to convergence of AICc to AIC. 

3.5.1.4. Bayesian Information Criteria (BIC) 

It was developed by Schwarz, (1978). It is defined as; 

 𝐵𝐼𝐶 = −2 log[𝐿(̑, ̑)] + log(𝑛) 𝑘 (3.3) 

Where log  (𝑛) 𝑘 is the penalty term. 

BIC penalizes model complexity more than AIC. Basing on BIC, the model with the 

lowest BIC is selected.  

3.5.2. Model Diagnostic 

The Ljung-Box statistic is a function of the total sample autocorrelation,𝑟𝑗 up to any 

time lag 𝑚. It was developed by Greta Marianne Ljung and George Edward Pelham 

Box in 1978. The model's residuals were evaluated using the Ljung-Box statistic to 

determine whether or not all error autocorrelations were zero. The Ljung-Box statistics 

is defined as; 

 

Q(m) = n(n + 2)∑
rj
k

n − j

m

j=1

 

(3.4) 

where, following differencing, 𝑛 is the useful number of data points. 

Autocorrelations of zero are the optimal ACF for residuals. For the first 𝑚 lags, a p-

value < 0.05 suggests the likelihood of non-zero autocorrelation. 

3.5.3. Model Accuracy Evaluation 

Mean squared error (MSE) and root Mean absolute percentage error (MAPE) values 

was used to provide insight into the model’s performance with the goal of assessing 

forecasting accuracy and make adjustments as deemed. 

3.6. Ethical Consideration. 

To introduce the researcher to the Marimanti Level 4 Hospital Authorities, a letter of 

introduction was requested from Tharaka University. The Tharaka University Research 

and Ethics Committee was consulted for ethics permission and clearance. The National 

Commission of Science, Technology, and Innovation (NACOSTI) in Kenya was then 

consulted for a research permit, which is included in the appendix. All information 

sources used in this study were cited. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1. Introduction 

This chapter discusses the results and the findings of the analysis in line with the 

objectives of the study. 

4.2. Descriptive Statistics 

Table 4.1 presents the summary statistics for the outpatient visits series. The significant 

difference between the highest and lowest number of outpatient visits supports an 

upward trend. The negative value of skewness indicates that the data has a left tail, 

whereas the small value suggests that the data series is relatively symmetric about the 

mean. The negative kurtosis value indicates that the observations are not following a 

normal distribution.             

Table 4.1. Descriptive statistics of the series 

Descriptive Statistics 

N 132 

Mean 2563.17 

Standard deviation 215.47 

Skewness -0.23 

Kurtosis -0.61 

Maximum 3000 

Minimum  2000 

4.3. The trend of Outpatient Attendance at Marimanti Level 4 Hospital  

To start time series modelling, the series needs to be stationary. A time series is deemed 

stable if there is no discernible variation in either the mean (trend) and the variance 

(season). The stationarity of the series is ascertained using the ACF and 

PACF correlograms, the unit root test (ADF test), the time plot, and series 

decomposition. The series is made stationary by taking the difference. 

4.3.1 Time Plot 

Figure 4.1, illustrates that the outpatient visit data fluctuates continuously during the 

study period, with noteworthy peaks and troughs occurring. The low volume of 

outpatient visits in 2013 can be related to the shift from a national to a devolved 

government. Outpatient attendance was low during 2016 and 2017, due to hospitalist 
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strikes throughout the same time period. In general, outpatient visits have increased 

over time, with the lowest number in 2013 at 2000 and the highest in 2023 at 3000. 

 
Figure 4.1. The time plot of the outpatient visits at Marimanti level 4 hospital 

4.3.2 ACF and PACF Correlogram 

ACF and PACF plots are critical checking if the data series is stationary. Randomness 

is checked using the plot; if it is, the autocorrelation should be near zero. 

 

 

Figure 4.2. ACF correlogram 

From figure 4.2, the correlogram of the outpatient visits series gradually declines, 

suggesting correlation of the past values and the current values. This indicates that the 

series is non-stationary. The partial autocorrelation function (PACF) shows spikes at 

the lower lag which exceeds the significant bound as shown in Figure 4.3. 
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Figure 4.3. PACF correlogram 

4.3.3. Augmented Dickey Fuller (ADF) Test 

The outpatient visits series' stationarity was examined using the ADF test. The 

outpatient visit series is non-stationary is supported by the p value of 0.4134, which is 

higher than the significance level of 0.05. Additionally, trend analysis utilizing the 

Mann Kendal test verified that the outpatient visits have a positive trend. The series 

requires differencing since the p-value is 2.22e-16, which is below the 5% standard of 

significance. The current study also used the ADF unit root test and Mann Kendal test 

to check for stationarity and trend, in contrast to the study of Mohammed & Mohamad 

(2020), which used the ACF and PACF plots to check the stationarity of the series.  

4.3.4. Series Decomposition 

Breaking down a series in order to separate its constituent parts is known as series 

decomposition. In accordance with research by Arthur (2003), Kam et al. (2010), 

Otieno et al. (2014), and Borbor et al. (2019), which found the SARIMA model suitable 

for predicting patient attendance, the decomposition of the outpatient visits series 

reveals that the series is composed of trend, periodic, and random components, as 

illustrated in Figure 4.4. As a result, modelling the series using the SARIMA model is 

appropriate. January through December were the months for which the seasonal 

influence was investigated. The number of outpatient visits is expected to rise in July 

and fall in February, with the biggest periodicity occurring in July (about 147) and the 

lowest occurring in February (around -224). 
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Figure 4.4. Decomposition of outpatients' visit 

4.3.5. Differencing the Outpatient Visits Series 

After taking the first seasonal difference, Figure 4.5 indicates some significant trends 

in the series; so, the first trend difference is taken in order to eliminate trends in the 

series. The absence of a discernible trend in the outpatient visit series across time 

indicates that the series is stable (see Figure 4.6). The first differenced series was 

subjected to trend analysis using the Mann Kendall test; the p-value, which is higher 

than the 5% level of significance, is 0.85897, indicating that the series is trend stationary 

following the first difference. Additionally, an ADF test was conducted to see whether 

the series had a unit root following the initial change. The test yielded a p-value of 0.01 

below the 0.05 level of significance, indicating that the null hypothesis of non-

stationarity is rejected and the series is prepared for modelling. 
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Figure 4.5. Graph of first seasonal differenced data 

 

Figure 4.6. Graph of trend differenced outpatient visits 

4.4. Fitting SARIMA Model using Outpatient Attendance Data 

Once the series is stationary, modeling follows. In SARIMA model development, 

Box-Jenkins approach was used which involves; model identification, parameter 

estimation and diagnostic checking.  
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4.4.1. Model Identification 

The objective was to use the ACF and PACF of the different outpatient series in Figure 

4.6 to generate a suitable SARIMA model. A non-seasonal MA is suggested by the 

ACF's notable rise at lag 2 (2). A seasonal MA is suggested by the ACF's notable rise 

at lag 12 (1). Therefore, the seasonal ARIMA (0,1,2) (0,1,1)12 model was our starting 

point. The Seasonal ARIMA (0,1,2) (2,1,1)12 model was found using the PACF plot, in 

which the seasonal component of the model was chosen using the ACF and the non-

seasonal part using the PACF. Among the competing set of models, the model with the 

lowest AIC and BIC values is regarded as the best model. Table 4.2 shows the set of 

competing SARIMA models alongside their AIC and BIC. 

Table 4.2. Set of competing SARIMA models 

Model AIC BIC 

SARIMA (0,1,1) (1,1,2)12 1150.63 1163.34 

SARIMA (0,1,1) (2,1,1)12 1142.71 1155.42 

SARIMA (0,1,2) (1,1,2)12 1147.44 1162.7 

SARIMA (0,1,2) (1,1,1)12 1173.52 1188.78 

SARIMA (0,1,2) (2,1,1)12 1139.56 1154.82 

SARIMA (0,1,2) (2,1,0)12    1170.16 1182.87 

SARIMA (1,1,1) (2,1,2)12 1176.86 1192.12 

The most likely model for outpatient visits at Marimanti Level 4 Hospital with the 

lowest AIC and BIC values was found to be SARIMA (0,1,2) (2,1,1)12. 

4.4.2. Model Parameter Estimation 

Using the Box-Jenkins methodology and time series modelling, the method of 

maximum likelihood was used to estimate the model parameters. Equation 2.18 

illustrates the Sarima model's generic form. SARIMA (0,1,2) (2,1,1)12 is the most 

effective model for predicting outpatient visits at Marimanti Level 4 Hospital. The 

estimated coefficients are shown in Table 4.3. 

Table 4.3. Table of coefficients 

Variable Coefficient Standard Error 

MA (1) [1] -0.3965 0.0926 

MA (2) [2] -0.3456 0.0926 

SAR (1) [
1
] -0.5925 0.1512 

SAR (2) [
2
] -0.4579 0.1148 

SMA (1) [𝛩1] -0.3407 0.1645 
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Further, Table 4.3 shows that 1 and 2 are negatives, this indicate that the fraction of 

the shock two period ago is still felt in the current period. 
1
 and 

2
are the seasonal AR 

coefficients, these suggest that the value of the outpatient visits at time 𝑡 is strongly 

impacted by the number of outpatient visits two periods ago that is, values of period 12 

and 24. The negative shows an inverse association. 𝛩1is the coefficient of the seasonal 

MA, this shows the impact of the error term from the same season in the previous year 

on the current number of outpatient visits. The negative value suggests that a positive 

shock one year ago reduces the current number of outpatient visits by approximately 

34.07% of the shock's size.  

The SARIMA (0,1,2) (2,1,1)12 is given as; 

(1 + 0.5925𝐵12 + 0.4579𝐵24)(1 − )𝑑(1 − 𝑠)𝐷y𝑡  =  (1 + 0.3965𝐵 +

0.3456𝐵2 + 0.3407𝐵12 + 0.1351B13 + 0.1177B14)ε𝑡                                                (4.1) 

where, 𝛥12𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−12(Seasonal difference), Δ𝑦𝑡 = y𝑡 − y𝑡−1 (non-seasonal 

differencing) and 𝑦𝑡 is the number of outpatient visits at time 𝑡  

4.4.3. Diagnostic test and Model Accuracy Evaluation  

The residues of the model are checked to determine if it follows normal distribution 

and are uncorrelated. These residuals are the difference between the observed values of 

the series and the forecasted values. Figure 4.7 shows that residual series is a sequence 

of White Noise since the time plot has no patterns, further, the autocorrelations for first 

36 lags all lie within the significant bound. Therefore, the residues are uncorrelated and 

follow normal distribution as shown by the normality plot. This suggest that the 

residues are sequence of White Noise with mean zero and a constant variance which is 

an ideal condition for the model’s residuals.  
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Figure 4.7. Plot of residuals from SARIMA (0,1,2) (2,1,1)12 model 

Further diagnostic using the Ljung-Box test confirmed that the model’s residuals 

autocorrelation is zero since the test p-value is 0.9409 which is greater than the 5% 

level of significance. The model’s forecasting accuracy was evaluated using the MAPE 

and the MASE. SARIMA (0,1,2) (2,1,1)12 has the least MAPE = 1.664% and MASE = 

0.46% and therefore, deemed to accurately forecast the outpatient visit at Marimanti 

level 4 hospital. This is in agreement with Kam et al., (2010), who assert that a MAPE 

less than 10% indicate a good level of accuracy and better than Baharsyah & 

Nurmalasari, (2020), ARIMA model with MAPE = 10.6%.  

4.5. Forecast the Outpatient Attendance for the Next Two Year 

The graph in Figure 4.8 shows that the number of outpatient visits at Marimanti Level 

4 hospital continues to rise in the forecasted period. The forecasts strongly agree with 

the observed outpatient visits series pattern.  
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Figure 4.8. Forecast graph 
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Table 4.4 shows the forecasted monthly outpatient visits at Marimanti level 4 hospital 

for the year 2025 and 2026 together with their 80% and 95% confident interval. 

Table 4.4. Table of forecasts two years ahead 

Time Forecast Lo 80 Hi 80 Lo 95 Hi 95 

2025 

January  2762 2621 2904 2546 2978 

February  2570 2426 2714 2349 2790 

March  2927 2780 3073 2703 3151 

April  2752 2603 2900 2524 2979 

May  2903 2752 3053 2672 3133 

June  2856 2703 3009 2623 3090 

July  2980 2825 3134 2743 3216 

August  2945 2788 3102 2705 3185 

September  2940 2782 3099 2698 3183 

October  2919 2758 3080 2673 3165 

November  2708 2545 2871 2459 2957 

December 2791 2626 2956 2539 3043 

2026 

January  2759 2581 2937 2487 3031 

February 2591 2406 2776 2308 2874 

March 2930 2742 3119 2642 3219 

April 2779 2588 2971 2486 3073 

May 2933 2738 3129 2635 3232 

June  2866 2668 3065 2563 3170 

July 3005 2803 3207 2697 3314 

August 2970 2765 3175 2657 3284 

September 2968 2760 3176 2649 3286 

October 2976 2765 3188 2654 3299 

November 2752 2538 2967 2425 3080 

December    2838 2621 3056 2506 3171 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.1. Summary 

The study fitted a statistical model to forecast the outpatient visits at Marimanti level 4 

hospital using SARIMA modeling. The study used time series research design in 

modeling the Outpatient visits series using Box-Jenkins techniques. The study used 

Monthly outpatient data from Marimanti Level 4 Hospital covering 11 years (January, 

2013 - December, 2023). 

The study found out that the outpatient visit series was seasonal, therefore, the series 

had trend, seasonal and random variations. The month of February and July had the 

lowest and highest seasonal effect respective. The study found that the outpatient visits 

series had trend and strong positive correlation using Mann Kendall test which gave tau 

= 0.617 and a 2-sided P value = 2.22e-16, thus the outpatient series was non-stationary. 

First order seasonal and non-seasonal difference rendered the series stationary. 

Basing on AIC and BIC of the set of competing models, three tentative SARIMA 

models were chosen, further diagnostic check confirmed SARIMA (0,1,2) (2,1,1)12 as 

the most plausible model to describe the outpatient visits at Marimanti level 4 hospital 

having the least MAPE and MASE of 1.664% and 0.46% respectively. 

The fitted SARIMA (0,1,2) (2,1,1)12 model was used to produce forecasts of monthly 

outpatient visits at Marimanti level 4 hospital two years ahead. The forecasts indicated 

an increasing trend in the number of outpatient visits at Marimanti Level 4 hospital for 

the forecasted period.  

5.2. Conclusions 

The Marimanti Level 4 Hospital's outpatient visits is seasonal. The data became stable 

with the use of first order seasonal and non-seasonal differencing. The hospital 

outpatient department sees a high number of outpatient visits in July, August, 

September, and October while a low numbers in November and a seasonal low in 

February 

SARIMA (0,1,2) (2,1,1)12 is the most plausible model to describe the patient attendance 

to Marimanti level 4 hospital Outpatient department of the three tentative models 

having the least AIC and BIC and least forecasting error. 
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The volume of outpatient visits at Marimanti Level 4 Hospital is expected to rise during 

the next two years. To guarantee proper healthcare delivery, hospital authorities should 

base their planning efforts on the forecasts. 

5.3. Recommendations   

The study recommends the following; 

I. The Management of Marimanti level 4 hospital should ensure availability of 

adequate supplies and human resource in from the month of June since the 

number of outpatient visits surges between June and October. 

II. To increase the forecast's precision and dependability, data should be gathered 

and analyzed continuously. This guarantees that the model is kept up to date 

and that it recognizes any new patterns in the data. 

III. The Hospital Management should rely on the forecasts for planning purposes in 

terms of resource allocation, workload scheduling and staffing to guarantee 

increased patient safety and satisfaction in service delivery. 

5.4. Suggestions for Further Research 

The current study looked at the number of patients visiting the hospital’s OPD, further 

research to be done using machine learning models to give more insight to the 

outpatient visits including the disease prevalence and predisposing factors.  
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