• Login
    View Item 
    •   Repository Home
    • Research Journal Articles
    • Department of Basic Sciences
    • View Item
    •   Repository Home
    • Research Journal Articles
    • Department of Basic Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis of Effect of Inclined Magnetic Field on MHD Boundary Layer Flow over a Porous Exponentially Stretching Sheet Subject to Thermal Radiation

    Thumbnail
    View/Open
    Analysis of Effect of Inclined Magnetic Field on MHD Boundary.pdf (461.8Kb)
    Date
    2021-10-30
    Author
    Mutegi, R. A.
    Okello, J. A.
    Kimathi, M.
    Metadata
    Show full item record
    Abstract
    MHD flow has a wide range of industrial applications such as MHD propulsion for space exploration, cooling of nuclear reactors, electronic packages, microelectronic devices, and many more. Due to this, a study on the MHD boundary layer flow of a viscous incompressible fluid over an exponentially stretching sheet with an inclined magnetic field in presence of thermal radiation is analyzed. The continuity, momentum, and energy equations governing the fluid motion are obtained. They are then transformed into a system of nonlinear ordinary differential equations using suitable similarity transformation variables. The resulting nonlinear ordinary differential equations are then transformed to a system of first-order ordinary differential equations and the numerical solution is executed using the collocation method. The effects of the magnetic field, angle of inclination, radiation, Prandtl number, and the exponential stretching of the sheet on the velocity and temperature of the fluid are discussed. It is observed that velocity increases as the sheet is stretched and decreases as the magnetic field and angle of inclination of the magnetic field increases. Temperature increases as magnetic field, angle of inclination, and radiation increase and lowers as the stretching and stratification parameter of the sheet and Prandtl number increases. The findings of this study are in agreement with other previously related work done.
    URI
    http://repository.tharaka.ac.ke/xmlui/handle/1/3168
    Collections
    • Department of Basic Sciences [70]

    Tharaka University copyright © 2020  Repository
    Contact Us | Send Feedback
    Designed by
    TUN Library
     

    TUN
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Tharaka University copyright © 2020  Repository
    Contact Us | Send Feedback
    Designed by
    TUN Library
     

    TUN