• Login
    View Item 
    •   Repository Home
    • Research Journal Articles
    • Department of Basic Sciences
    • View Item
    •   Repository Home
    • Research Journal Articles
    • Department of Basic Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modelling Fluid Flow in Zone 2 of an Open Horseshoe Channel with Lateral Inflow Channels

    Thumbnail
    View/Open
    Jason3982024JAMCS119605.pdf (434.6Kb)
    Date
    2024
    Author
    Jason, Jomba
    Okongo, Mark
    Kirimi, Jacob
    Onyango, Jimrise
    Metadata
    Show full item record
    Abstract
    Flooding has been a problem for a long time, especially after heavy rains. Channels constructed to lessen floods are used to move water into rivers, lakes, and the ocean. Engineers have been faced with the challenge of designing drainage ditches, irrigation canals, and navigation channels while making use of hydraulic efficiency to move as much water as possible in order to generate energy. The bulk of studies on open channels have focused on rectangular, parabolic, trapezoidal, and circular channels, leaving a knowledge gap that has to be filled. Less research has been done on channels that resemble horseshoes and have lateral inflows. Modeling a homogeneous flow in Zone 2 with a horseshoe-shaped cross-section and lateral inflows is the goal of this study. The study's goal was to ascertain how changes in the lateral inflow channels' area and an increase in the lateral inflows' length in zone 2 impact the main channel flow velocity. The physical circumstances of the flow issue were applied to the conservation equations in order to get the governing equations. These equations were solved using the finite difference approximation method because of its accuracy, stability, and convergence. The investigation's results were displayed graphically. The investigation found that when the cross sectional area reduces, the main channel's velocity increases. In the end, as the area of the lateral inputs reduces, so does the main channel's velocity. Flood mitigation and water collection for irrigation push the boundaries of science, technology, and engineering by requiring innovative solutions and climate change-tolerant infrastructure that increase crop yield and resilience.
    URI
    http://repository.tharaka.ac.ke/xmlui/handle/1/4422
    Collections
    • Department of Basic Sciences [70]

    Tharaka University copyright © 2020  Repository
    Contact Us | Send Feedback
    Designed by
    TUN Library
     

    TUN
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Tharaka University copyright © 2020  Repository
    Contact Us | Send Feedback
    Designed by
    TUN Library
     

    TUN